Second Semester M.Sc. Degree Examination, July 2019 (CBCS Scheme) #### Mathematics ### Paper M 203 T - TOPOLOGY - II Time: 3 Hours [Max. Marks: 70 #### Instructions: - 1) Answer any FIVE full questions. - 2) All questions carry equal marks. - (a) Define a compact space. Prove that compactness is a topological property. - (b) Prove that a Hausdorff space is locally compact if and only if each point has a neighbourhood whose closure is compact. (7 + 7) - 2. (a) Define a Lindelof space. Prove that every second axiom space is a Lindelof space. - (b) Prove that every separable metric space is second axiom space. (7 + 7) - Prove that the product space $X_1 \times X_2$ is locally connected if and only if both X_1 and X_2 locally connected. - (b) Prove that product topology is the smallest topology for which projections are continuous. (7 + 7) - \mathscr{K} (a) Define a T_1 space. Prove that every T_1 space is T_0 space. Give an example of T_0 space which is not a T_1 space. - (b) Prove that a topological space (X, τ) is a T_1 space if and only if all singleton sets are closed. (7 + 7) - 5. (a) Define a Hausdorff space. Show that the property of a space being a Hausdorff space is a hereditary property. - (b) Prove that a metric space is T_3 space. (7 + 7) # Q.P. Code: 60863 - 6 (a) Prove that a compact Hausdorff space is normal. - (a) Prove that a normal space is completely regular if and only if it is regular. - 7. State and prove Urysohn's lemma. - 8. (a) Prove that a paracompact Hausdorff space is a normal space. - (b) Prove that every regular second countable T_1 space is metrizable. (7+7) (14)