Second Semester M.Sc. Degree Examination, July 2019

(CBCS Scheme)

Mathematics

Paper M 203 T - TOPOLOGY - II

Time: 3 Hours

[Max. Marks: 70

Instructions:

- 1) Answer any FIVE full questions.
- 2) All questions carry equal marks.
- (a) Define a compact space. Prove that compactness is a topological property.
 - (b) Prove that a Hausdorff space is locally compact if and only if each point has a neighbourhood whose closure is compact. (7 + 7)
- 2. (a) Define a Lindelof space. Prove that every second axiom space is a Lindelof space.
 - (b) Prove that every separable metric space is second axiom space. (7 + 7)
- Prove that the product space $X_1 \times X_2$ is locally connected if and only if both X_1 and X_2 locally connected.
 - (b) Prove that product topology is the smallest topology for which projections are continuous. (7 + 7)
- \mathscr{K} (a) Define a T_1 space. Prove that every T_1 space is T_0 space. Give an example of T_0 space which is not a T_1 space.
 - (b) Prove that a topological space (X, τ) is a T_1 space if and only if all singleton sets are closed. (7 + 7)
- 5. (a) Define a Hausdorff space. Show that the property of a space being a Hausdorff space is a hereditary property.
 - (b) Prove that a metric space is T_3 space.

(7 + 7)

Q.P. Code: 60863

- 6 (a) Prove that a compact Hausdorff space is normal.
 - (a) Prove that a normal space is completely regular if and only if it is regular.
- 7. State and prove Urysohn's lemma.
- 8. (a) Prove that a paracompact Hausdorff space is a normal space.
 - (b) Prove that every regular second countable T_1 space is metrizable. (7+7)

(14)